Tetrahedron 66 (2010) 4326-4329

Contents lists available at ScienceDirect

# Tetrahedron

journal homepage: www.elsevier.com/locate/tet

# Enantioselective synthesis of (*S*)-4-methyleneglutamic acid via tandem conjugate addition—elimination under phase-transfer catalytic conditions

Sukhoon Kang<sup>a</sup>, Qinghua Shi<sup>b</sup>, Min Woo Ha<sup>a</sup>, Jin-Mo Ku<sup>a</sup>, Maosheng Cheng<sup>b</sup>, Byeong-Seon Jeong<sup>c</sup>, Hyeung-geun Park<sup>a,\*</sup>, Sang-sup Jew<sup>a,\*</sup>

<sup>a</sup> Research Institute of Pharmaceutical Science and College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
 <sup>b</sup> Shenyang Pharmaceutical University, Shenyang Wenhua Road 103, China
 <sup>c</sup> College of Pharmacy, Yeungnam University, Gyeongsan 712-749, Republic of Korea

#### ARTICLE INFO

Article history: Received 25 February 2010 Received in revised form 3 April 2010 Accepted 6 April 2010 Available online 10 April 2010

#### ABSTRACT

An efficient enantioselective synthetic method for (*S*)-4-methyleneglutamic acid is reported. Phase-transfer catalytic conjugate addition—elimination of the benzophenone imine of glycine *tert*-butyl ester in the presence of chiral *Cinchona*-derived catalysts give the corresponding conjugated addition products (>99% ee), which could be hydrolyzed to chiral (*S*)-4-methyleneglutamic acid.

© 2010 Elsevier Ltd. All rights reserved.

Tetrahedro

# 1. Introduction

(*S*)-4-Methyleneglutamic acid (1), first isolated from germinated peanuts in 1951 and also found in a variety of other plants,<sup>1</sup> has been known to possess inhibitory activity against the central nervous system.<sup>2</sup> The peptide composed of Boc-4-methyleneGlu-Glu-Val has been shown to be a strong inhibitor of vitamin K-dependent carboxylation, an important process in blood clotting.<sup>3</sup>



(S)-4-Methylene glutamic acid

As a part of our research program to study the structure-activity relationship of **1** and its derivatives, an efficient and practical synthetic method of **1** is need to be developed. Although there have been several synthetic methods for optically enriched **1**, all of the reported processes employed chiral substrates or enzymes for resolution, which might not be suitable for large scale preparation.<sup>4</sup> In the last decade, we have made efforts toward the development of novel cinchona alkaloid-derived chiral phase-transfer catalysts and their application in the enantioselective preparation of natural and nonnatural optically active amino acid derivatives, including the asymmetric alkylation of the *N*-(diphenylmethylene) glycine *tert*-butyl ester (**2**), a powerful route toward chiral amino acids.<sup>5</sup> In this article, an efficient catalytic enantioselective synthesis of **1** via asymmetric tandem conjugate addition—elimination under phase-transfer conditions is reported.

#### 2. Results and discussion

In 2005, Ramachandran et al. reported quite excellent enantioselective synthetic method for 4-alkylidenyl glutamic acid methyl esters by tandem conjugate addition—elimination of activated allylic acetates under chiral PTC conditions.<sup>6</sup> Similarity of structures led us to adapt their method for the synthesis of (*S*)-4-methyleneglutamic acid. We envisioned that an asymmetric phasetransfer catalytic alkylation can be employed as a key step, as shown in the retrosynthetic analysis (Scheme 1), for introduction of the *S* chirality, followed by acidic hydrolysis to afford **1**.



Scheme 1. Strategy for the synthesis of (S)-4-methyleneglutamic acid (1).

Michael acceptors (3a-d) were prepared in two steps from ethyl acrylate (5) by the Baylis–Hillman reaction,<sup>7</sup> followed by



<sup>\*</sup> Corresponding authors. Tel.: +82 2 880 7871; fax: +82 2 872 9129; e-mail address: hgpk@snu.ac.kr (H.-geun Park).

<sup>0040-4020/\$ —</sup> see front matter @ 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2010.04.034

O-acylation (Scheme 2). Treatment of ethyl acrylate (**5**) with formaldehyde in the presence of DABCO in THF/H<sub>2</sub>O (1:1) afforded ethyl 2-(hydroxymethyl) acrylate (**6**) in 80% yield. Acylation of **6** with the selected acid chlorides gave the corresponding Michael acceptors (**3a**–**d**).



Scheme 2. Preparation of Michael acceptors.

Catalytic asymmetric conjugate addition—elimination was carried out with ethyl 2-(acyloxymethyl)acrylate **3** and benzophenone imine of glycine ester **2** under phase-transfer conditions (Table 1). Four kinds of hydrocinchonidinium salts (**7a**–**d**, Fig. 1),<sup>8</sup> which have previously shown excellent capabilities as chiral phase-transfer catalysts in the asymmetric alkylation of **2**, were employed for chirality generation.

#### Table 1

Enantioselective tandem conjugate addition-elimination under PTC conditions<sup>a</sup>

| • | <b>3a</b> (1.5 eq)                                             |                       | 1.1 M citric acid                                                        | BzHN Ot-Bu          |
|---|----------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------|---------------------|
| z | 7 (10 mol%)<br>base (10 eq)<br>CH <sub>2</sub> Cl <sub>2</sub> | Ph CO <sub>2</sub> Et | 2. NaHCO <sub>3</sub> (10 eq)<br>BzCl (3 eq)<br>THF:H <sub>2</sub> O=1:1 | ECO <sub>2</sub> Et |

| Entry | 7  | Base              | Temp (°C) | Time <sup>b</sup> (h) | Yield <sup>c</sup> (%) | ee (%) <sup>d</sup> (config.) <sup>e</sup> |
|-------|----|-------------------|-----------|-----------------------|------------------------|--------------------------------------------|
| 1     | 7a | 50% KOH           | -40       | 16                    | 93                     | 64 (S)                                     |
| 2     | 7b | 50% KOH           | -40       | 20                    | 87                     | 78 (S)                                     |
| 3     | 7c | 50% KOH           | -40       | 16                    | 86                     | 76 (S)                                     |
| 4     | 7d | 50% KOH           | -40       | 26                    | 84                     | 90 (S)                                     |
| 5     | 7d | 50% KOH           | -55       | 30                    | 85                     | 92 (S)                                     |
| 6     | 7d | $CsOH \cdot H_2O$ | -78       | 12                    | 91                     | 92 (S)                                     |

<sup>a</sup> Reaction conducted with the benzophenone imine of glycine *tert*-butyl ester (**2**, 1.0 equiv), Michael acceptor (**3a**, 1.5 equiv), base (10.0 equiv), and PTC (**7**, 0.1 equiv).

<sup>b</sup> Reaction time of the first step.

<sup>c</sup> Isolated yield for the two steps.

<sup>d</sup> Enantiopurity determined by chiral HPLC analysis of *N*-benzoyl derivative **8** using a chiral column (DAICEL Chiralpak AD-H) with hexane/2-propanol as the solvent system.

<sup>e</sup> Absolute configuration determined by comparing with the optical rotation value of the 4-methyleneglutamic acid HCl salt, obtained by hydrolysis of **8** in 6.0 M HCl, with literature value.<sup>4c</sup>



Figure 1. Phase-transfer catalysts.

Screening of PTC was first performed under the same conditions (**3a** Michael acceptor, 50% KOH base,  $CH_2Cl_2$  solvent, and -40 °C reaction temperature), and the results are shown in Table 1. The *O*-allyl-*N*-(9-anthracenylmethyl) hydrocinchonidinium bromide (**7d**) gave the product with the highest enantioselectivity (entry 4, 84% yield, 90% ee). Generally, C(9)-*O*-allyl catalysts (entry 2, **7b**, 78%

ee; entry 4, **7d**, 90% ee) showed higher enantioselectivities compared to those of C(9)–*OH* catalysts (entry 1, **7a**, 64% ee; entry 3, **7c**, 76% ee), respectively. Further tuning of the reaction conditions revealed that use of the CsOH·H<sub>2</sub>O base at lower reaction temperature (-78 °C) was highly advantageous to improve both chemical and optical yields (entry 6, 91% yield, 92% ee).

Next, the Michael acceptor was optimized under the best reaction conditions (entry 6 in Table 1) to improve the enantioselectivity, which was not studied in the works of Ramachandran et al.<sup>6</sup> Asymmetric tandem conjugate addition-elimination of **2** with the prepared Michael acceptors (**3b**-**d**) were performed under reaction conditions of CsOH·H<sub>2</sub>O in the presence of 7d in dichloromethane at -78 °C (Table 2). Chemical yield and enantioselectivity were variable depending upon the leaving groups in the Michael acceptors. All afforded the conjugate addition-elimination product (4) in high enantioselectivities. It was expected that 3c, with a better leaving group, would provide a higher chemical yield, but the lowest yield with moderate enantioselectivity was observed among the Michael acceptors (3a-d). The 4-methoxy-incorporated 3b showed chemical and optical yields substantially higher than 4-nitro analogue **3c**. The smaller acetoxy group (**3d**) gave the highest chemical yield. The highest enantioselectivity was obtained with **3b** (entry 2, 99% ee). There is no clear evidence yet but we speculate that the 4-methoxybenzoyl group might play an important role for the high enantioselectivity in electronically or spatially in PTC reaction process. Hydrolysis of 8 (99% ee) in 6.0 M HCl gave the (S)-4-methyleneglutamic acid hydrochloride salt (1 · HCl) in 97% vield. Absolute configuration was confirmed as S by comparing optical rotation with the reported value  $\{[\alpha]_D^{20} + 13.5\}$  $(c 0.5, \text{HCl}); \text{ lit.}^{4c} [\alpha]_D^{20} + 13.2 (c 1.0, \text{HCl}).$ 

 Table 2

 Enantioselective phase-transfer catalytic Michael reaction and elimination reaction<sup>a</sup>



| Entry | 3  | ĸ               | Time <sup>b</sup> (n) | Yield <sup>e</sup> (%) | ee (%) <sup>ee</sup> (conng.) |
|-------|----|-----------------|-----------------------|------------------------|-------------------------------|
| 1     | 3a | Phenyl          | 12                    | 91                     | 92 (S)                        |
| 2     | 3b | 4-Methoxyphenyl | 14                    | 90                     | 99 (S)                        |
| 3     | 3c | 4-Nitrophenyl   | 13                    | 77                     | 93 (S)                        |
| 4     | 3d | Methyl          | 12                    | 95                     | 96 (S)                        |

<sup>a</sup> Reactions carried out with benzophenone imine of glycine *tert*-butyl ester **2** (1.0 equiv), Michael acceptor **3** (1.5 equiv), CsOH·H<sub>2</sub>O (10.0 equiv), **7d** (0.1 equiv).

<sup>b</sup> Reaction time of the first step.

<sup>c</sup> Isolated yield for the two steps.

<sup>d</sup> Enantiopurity and absolute configuration were determined as Table 1.

#### 3. Conclusions

A new enantioselective synthetic method of (*S*)-4-methyleneglutamic acid (**1**) under asymmetric phase-transfer catalytic tandem conjugate addition—elimination of the benzophenone imine of glycine *tert*-butyl ester (**2**) with chiral cinchona catalysts has been developed. Highly optically active **1**·HCl was prepared from **2** in three steps at 88% chemical yield and 99% ee.

## 4. Experimental

#### 4.1. General

Infrared (IR) spectra were recorded on a JASCO FT/IR-300E and Perkin–Elmer 1710 FT spectrometer. <sup>1</sup>H NMR was measured at 300 or 400 MHz and <sup>13</sup>C NMR at 75, 100, or 125 MHz. Chemical shifts were recorded in parts per million relative to CHCl<sub>3</sub> ( $\delta$  7.24) and H<sub>2</sub>O ( $\delta$  4.70) for <sup>1</sup>H NMR and relative to the central CDCl<sub>3</sub> ( $\delta$  7.721) resonance for <sup>13</sup>C NMR. Melting points were not corrected. Enantiomeric excess (ee) was determined by HPLC using 4.6 mm×250 mm Daicel Chiralpak AD-H column. Optical rotations were measured on a JASCO DIP-1000 digital polarimeter. High-resolution mass spectra (HRMS) were measured on a JEOL JMS-AX 505wA, JEOL JMS-HX/HX 110A spectrometer. Flash column chromatography was carried out using silica gel (230–400 mesh). For thin-layer chromatography (TLC) analysis, Merck precoated TLC plates (silica gel 60 GF<sub>254</sub>, 0.25 mm) were used. All solvents and commercially available chemicals were used without additional purification. Ethyl 2-(hydroxymethyl)acrylate (**6**) was prepared according to reported procedures.<sup>7</sup>

#### 4.2. Ethyl 2-(benzoyloxymethyl)acrylate (3a)

To a cooled solution of ethyl 2-(hydroxymethyl)acrylate (**6**) (1.0 g, 7.68 mmol) in dichloromethane (30 mL) were added triethylamine (1.61 mL, 11.52 mmol) and benzoyl chloride (1.34 mL, 11.52 mmol). After stirring for 1 h, the reaction mixture was washed with brine (2×30 mL), dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated. The residue was purified by column chromatography (hexanes/EtOAc=10:1) to afford **3a** (1.06 g, 59%) as a colorless oil. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.06–8.03 (m, 2H), 7.58–7.53 (m, 1H), 7.46–7.40 (m, 2H), 6.40 (s, 1H), 5.91 (s, 1H), 5.05 (s, 2H), 4.24 (q, *J*=7.14 Hz, 2H), 1.29 (t, *J*=7.14 Hz, 3H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  165.8, 165.1, 135.5, 133.0, 130.4, 129.5, 128.3, 127.0, 62.7, 14.0 ppm; IR (KBr)  $\nu$  2983, 1789, 1725, 1602, 1452, 1416, 1315, 1274, 1213, 1175, 1111, 1070, 1027, 712 cm<sup>-1</sup>; HRMS (FAB): calcd for [C<sub>13</sub>H<sub>15</sub>O<sub>4</sub>]<sup>+</sup>: 235.0970, found: 235.0964.

#### 4.3. Ethyl 2-(4-methoxybenzoyloxymethyl)acrylate (3b)

To a cooled solution of ethyl 2-(hydroxymethyl)acrylate (**6**) (1.0 g, 7.68 mmol) in dichloromethane (30 mL) were added triethylamine (1.61 mL, 11.52 mmol) and 4-methoxybenzoyl chloride (2.62 g, 15.36 mmol). After stirring for 3 h, the reaction mixture was washed with brine (2×30 mL), dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated. The residue was purified by column chromatography (hexanes/EtOAc=20:1) to afford **3b** (634 mg, 31%) as a white solid. Mp 40 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.13–7.98 (m, 2H), 6.93–6.88 (m, 2H), 6.38 (s, 1H), 5.89 (s, 1H), 5.02 (s, 2H), 4.24 (q, *J*=7.14 Hz, 2H), 3.85 (s, 3H), 1.28 (t, *J*=7.14 Hz, 3H) ppm; <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  165.6, 165.2, 135.7, 131.6, 126.8, 122.2, 113.6, 62.5, 60.9, 55.4, 14.1 ppm; IR (KBr)  $\nu$  2980, 1721, 1606, 1511, 1458, 1366, 1309, 1258, 1167, 1101, 1028, 848, 769, 696 cm<sup>-1</sup>; HRMS (FAB): calcd for [C<sub>14</sub>H<sub>17</sub>O<sub>5</sub>]<sup>+</sup>: 265.1076, found: 265.1083.

# 4.4. Ethyl 2-(4-nitrobenzoyloxymethyl)acrylate (3c)

To a cooled solution of ethyl 2-(hydroxymethyl)acrylate (**6**) (1.0 g, 7.68 mmol) in dichloromethane (30 mL) were added triethylamine (1.64 mL, 11.78 mmol) and 4-nitrobenzoyl chloride (2.18 g, 11.78 mmol). After stirring for 10 min, the reaction mixture was washed with brine (2×30 mL), dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated. The residue was purified by column chromatography (hexanes/EtOAc=20:1) to afford **3c** (1.21 g, 55%) as a pale yellow solid. Mp 78 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.29–8.18 (m, 4H), 6.44 (s, 1H), 5.93 (s, 1H), 5.08 (s, 2H), 4.25 (q, *J*=7.14 Hz, 2H), 1.29 (t, *J*=7.14 Hz, 3H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  165.0, 164.1, 150.6, 135.2, 135.1, 130.7, 128.2, 123.5, 63.8, 61.1, 14.1 ppm; IR (KBr)  $\nu$  3114, 1725, 1648, 1517, 1460, 1406, 1348, 1272, 1117, 1009, 963, 878, 854, 819, 784, 719 cm<sup>-1</sup>; HRMS (FAB): calcd for [C<sub>13</sub>H<sub>14</sub>O<sub>6</sub>N]<sup>+</sup>: 280.0821, found: 280.0813.

#### 4.5. Ethyl 2-(acetoxymethyl)acrylate (3d)

To a cooled solution of ethyl 2-(hydroxymethyl)acrylate (**6**) (1.0 g, 7.68 mmol) in dichloromethane (30 mL) were added triethylamine (2.75 mL, 19.74 mmol) and acetyl chloride (1.4 mL, 19.74 mmol). After stirring for 20 min, the reaction mixture was washed with brine (2×30 mL), dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated. The residue was purified by column chromatography (hexanes/EtOAc=20:1) to afford **3d** (1.21 g, 51%) as a colorless oil. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  6.32 (s, 1H), 5.79 (s, 1H), 4.76 (s, 2H), 4.20 (q, *J*=7.14 Hz, 2H), 2.06 (s, 3H), 1.26 (t, *J*=7.14 Hz, 3H) ppm; <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  170.2, 165.0, 135.3, 127.0, 62.3, 60.8, 20.7, 14.0 ppm; IR (KBr)  $\nu$  2984, 1748, 1725, 1643, 1370, 1305, 1231, 1178, 1050, 953, 816 cm<sup>-1</sup>.

### 4.6. (*S*)-1-*tert*-Butyl 5-ethyl 2-(diphenylmethylene-amino)-4-methylenepentanedioate (4)

A suspension of N-(diphenylmethylene)glycine tert-butyl ester (2) (30 mg, 0.102 mmol), ethyl 2-(4-methoxybenzoyloxymethyl) acrylate (3b) (40.4 mg, 0.153 mmol), and chiral phase-transfer catalyst 7d (6.2 mg, 0.010 mmol) in dichloromethane (0.5 mL) was cooled at -78 °C. Solid CsOH·H<sub>2</sub>O (171 mg, 1.02 mmol) was then added to the reaction mixture. After stirring at -78 °C for 14 h, the reaction mixture was washed with brine (2×2 mL), dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated. The residue was purified by column chromatography (hexanes/EtOAc=20:1) to afford **4** (38 mg. 90%) as a pale yellow oil. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.59–7.57 (m, 2H), 7.39-7.26 (m, 6H), 7.11-7.08 (m, 2H), 6.17 (s, 1H), 5.60 (s, 1H), 4.18 (q, J=4.38 Hz, 1H), 4.03-3.91 (m, 2H), 3.00 (dd, J=13.53, 4.2 Hz, 1H), 2.79 (dd, *J*=13.35, 8.97 Hz, 1H), 1.43 (s, 9H), 1.11 (t, *J*=7.14 Hz, 3H) ppm; <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  170.6, 170.5, 166.4, 139.5, 136.8, 136.4, 130.1, 128.7, 128.4, 128.2, 128.0, 127.9, 81.1, 64.5, 60.4, 36.0, 28.0, 27.9, 13.9 ppm; IR (KBr) v 2978, 1721, 1626, 1446, 1392, 1368, 1280, 1151, 1028, 950, 846, 781, 698 cm<sup>-1</sup>; HRMS (FAB): calcd for [C<sub>14</sub>H<sub>17</sub>O<sub>5</sub>]<sup>+</sup>: 408.2175, found: 408.2165.

# 4.7. (*S*)-1-*tert*-Butyl 5-ethyl 2-benzamido-4-methylenepentanedioate (8)

A mixture of 4 (37.4 mg, 0.092 mmol), 1.0 M citric acid (1.5 mL), and tetrahydrofuran (1.5 mL) was stirred at room temperature for 2 h. Sodium bicarbonate was added to the mixture until the pH reached 7–8, and then benzoyl chloride (0.036 mL, 0.306 mmol) was added. The mixture was stirred for 5 h. The tetrahydrofuran was then evaporated and the residue diluted with ethyl acetate (3 mL). The mixture was washed with brine  $(2 \times 3 \text{ mL})$ , dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated. The residue was purified by column chromatography (hexanes/EtOAc=10:1) to afford 8 (32 mg, 90%) as a colorless oil. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.80–7.77 (m, 2H), 7.50–7.38 (m, 3H), 7.14 (d, *J*=6.96, 1H), 6.26 (s, 1H), 5.70 (s, 1H), 4.81–4.74 (m, 1H), 4.25–4.15 (m, 2H), 2.93–2.78 (m, 2H), 1.45 (s, 9H), 1.27 (t, *J*=7.14 3H) ppm; <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) § 170.5, 167.2, 166.7, 136.1, 133.8, 131.4, 128.4, 126.9, 82.2, 61.1, 53.0, 34.4, 27.8, 25.2, 13.9 ppm; IR (KBr) v 3347, 2979, 1719, 1645, 1580, 1533, 1488, 1368, 1309, 1228, 1154, 1026, 953, 846, 714 cm<sup>-1</sup>; HRMS (FAB): calcd for [C<sub>19</sub>H<sub>26</sub>O<sub>5</sub>N]<sup>+</sup>: 348.1811, found: 348.1803. Enantiopurity was determined by chiral HPLC analysis (DIACEL Chiralcel AD-H, hexanes/2-propanol=9:1), flow rate=1.0 mL/min, 23 °C,  $\lambda$ =254 nm, retention time, minor 10.4 min, minor 20.7 min, 99% ee.

#### 4.8. (S)-4-Methyleneglutamic acid hydrochloride (1 HCl)

A mixture of **8** (109 mg, 0.314 mmol) and 6.0 M HCl (2 mL) was refluxed for 24 h. Concentration of the reaction mixture in vacuo

afforded **1** · HCl (59.3 mg, 97%) as a pale yellow solid. Mp 196 °C; <sup>1</sup>H NMR (500 MHz, D<sub>2</sub>O)  $\delta$  6.39 (s, 1H), 5.89 (s, 1H), 4.31–4.16 (m, 1H), 3.75 (d, *J*=10.5, 3H), 3.01–2.79 (m, 2H) ppm; <sup>13</sup>C NMR (100 MHz, D<sub>2</sub>O)  $\delta$  171.3, 169.6, 133.6, 132.2, 52.3, 32.5 ppm;  $[\alpha]_D^{20}$  +13.2 (*c* 0.5, HCl); lit.<sup>4c</sup>  $[\alpha]_D$  +13.2 (*c* 1.0, HCl).

## Acknowledgements

This work was supported by the National Research Foundation (NRF) grant funded by the Korea government (MEST) (No. 201000017).

### Supplementary data

Supplementary data associated with this article can be found in the online version, at doi:10.1016/j.tet.2010.04.034.

#### **References and notes**

 (a) Done, J.; Fowden, L. Biochem. J. 1952, 51, 451; (b) Zacharius, R. M.; Pollard, J. K.; Steward, F. C. J. Am. Chem. Soc. 1954, 76, 1961; (c) Tschiersch, B. Phytochemistry 1962, 1, 103; (d) Blake, J.; Fowden, L. Biochem. J. 1964, 92, 136; (e) Watson, R.; Fowden, L. Phytochemistry 1973, 12, 617; (f) Hatanaka, S.-I.; Katayama, H. Phytochemistry **1975**, *14*, 1434; (g) Evans, C. S.; Bell, E. A. Phytochemistry **1978**, *17*, 1127; (h) Shewry, P. R.; Fowden, L. Phytochemistry **1976**, *15*, 1981; (i) Meier, L. K.; Sorensen, H. Phytochemistry **1979**, *18*, 1173; (j) Kasai, T.; Nishitoba, T.; Shiroshita, Y.; Sakamura, S. Agric. Biol. Chem. **1984**, *48*, 2271.

- 2. Powell, G. K.; Dekker, E. E. Prep. Biochem. 1981, 11, 339.
- Guibé, E.; Decottignies-LeMaréchal, P.; Le Maréchal, P.; Azerad, R. FEBS Lett. 1984, 177, 265.
- (a) Baldwin, J. E.; Adlington, R. M.; Robinson, N. G. J. Chem. Soc., Chem. Commun. 1987, 153; (b) Moody, C. M.; Young, D. W. Tetrahedron Lett. 1993, 34, 4667; (c) Exquerra, J.; Pedregal, C.; Micó, I.; Nájera, C. Tetrahedron: Asymmetry 1994, 5, 921; (d) Dieterich, P.; Young, D. W. Org. Biomol. Chem. 2006, 4, 1492.
- (a) For our recent review on the cinchona alkaloid-based phase-transfer catalysts for asymmetric synthesis, see: Jew, S.-s; Park, H.-g. *Chem. Commun.* **2009**, 7090; For our recent reports on asymmetric phase-transfer catalysis, see: Yoo, M.-S.; Jeong, B.-S.; Lee, J.-H.; Park, H.-g.; Jew, S.-s Org. Lett. **2005**, 7, 1129; (b) Kim, T.-S.; Lee, Y.-J.; Jeong, B.-S.; Park, H.-g.; Jeong, B.-S. Org. Chem. **2006**, 71, 8276; (c) Lee, J.; Kim, M.-h.; Jew, S.-s.; Park, H.-g.; Jeong, B.-S. Chem. Commun. **2008**, 1932; (d) Kim, T.-S.; Lee, Y.-J.; Lee, K.; Jeong, B.-S.; Park, H.-g.; Jew, S.-s Synlett **2009**, 671; (e) Kim, M.-h.; Choi, S.-H.; Lee, Y.-J.; Lee, J.; Nahm, K.; Jeong, B.-S.; Park, H.-g.; Jew, S.-s Org. Lett. **2009**, 11, 3738.
- Ramachandran, P. V.; Madhi, S.; Bland-Berry, L.; Reddy, M. V. R.; O'Donnell, M. J. J. Am. Chem. Soc. 2005, 127, 13450.
- 7. Byun, H.-S.; Reddy, K. C.; Bittman, R. Tetrahedron Lett. 1994, 35, 1371.
- (a) O'Donnell, M. J.; Bennett, W. D.; Wu, S. J. Am. Chem. Soc. 1989, 111, 2353; (b) Lygo, B.; Wainwright, P. G. Tetrahedron Lett. 1997, 38, 8595; (c) Corey, E. J.; Xu, F.; Noe, M. C. J. Am. Chem. Soc. 1997, 119, 12414; (d) Jew, S.-s.; Yoo, M.-S.; Jeong, B.-S.; Park, H.-g. Org. Lett. 2002, 4, 4245.